
Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 1

Developer's Guide

Contents

1. Introduction

2. Enhancing The DTD
 2.1. Data Structure, Data Content and Data Access

2.2. Adding Data Access Logic
2.3. The %PM Tag
2.4. The %EL Tag
2.5. The %AF Tag

2.5.1. Populating The Variable Reference
2.5.1.1. Attributes
2.5.1.2. PCDATA

2.5.2. Repeatable Elements

2.6. Putting It All Together

3. The Routine Generator Function
3.1. Global Structure
3.2. Calling The Function
3.3. Function Stages

3.3.1. Stage 1 - Restructuring + Normalisation
3.3.2. Stage 2 - Parameter Entity Resolution
3.3.3. Stage 3 - Document Content Analysis
3.3.4. Stage 4 - Data Access Validation
3.3.5. Stage 5 - Document Flow Analysis
3.3.6. Stage 6 - Export Routine Generation

3.4. Function Limitations
3.4.1. Recursion
3.4.2. String Literal Delimiters
3.4.3. Conditional Sections
3.4.4. Well-formedness & Validity

3.5. Error Types

4. The Export Routines
4.1. Calling The Routines
4.2. Initialisation

4.2.1. Output Device ID
4.2.2. Indentation/Line Feed Settings/Escaping
4.2.3. Document Prolog

4.3. Putting It All Together

5. Distribution Files

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 2

1. Introduction
The Lastic DTD Project Manager [L-DPM] is a GUI development tool for the Mumps [M] /
Caché environment, designed to ease the development and maintenance of XML generation
software by automatically creating export routines based on specified DTDs.

The purpose of this Developer's Guide is to describe how the Routine Generator function of
the L-DPM works, what it does, what it doesn't do, and what is required of the developer. As
such, this guide will also be relevant to those who may have purchased the Routine
Generator function only, and not the L-DPM itself. For information on using the L-DPM
software, refer to the Software User's Guide.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 3

2. Enhancing The DTD
The Routine Generator function creates XML export routines by reading and analysing the
contents of DTDs. Before the function itself is discussed, it is necessary to examine what a
DTD looks like and how it needs to be enhanced for the purposes of the Routine Generator. It
is assumed that the reader has knowledge of DTD and XML document syntax.

The following DTD is for a simplified purchase order XML document:

Figure 2.1 purchaseOrder.DTD

A sample XML document ['purchaseOrder.xml'], based on this DTD, can be found in
Appendix A.

<!-- Purchase Order DTD -->

<!-- Created on 05/06/2001 for ABC Retailers Inc -->

<! ELEMENT purchaseOrder (shipTo, shipDate, ItemList)>

<! ATTLIST purchaseOrder

 PONumber CDATA #REQUIRED

 customerID CDATA #REQUIRED

customerName CDATA #IMPLIED

 orderDate CDATA #REQUIRED>

<! ELEMENT shipTo EMPTY>

<! ATTLIST shipTo

 street CDATA #REQUIRED

 city CDATA #REQUIRED

state CDATA #REQUIRED

 zip CDATA #REQUIRED>

<! ELEMENT shipDate (#PCDATA)>

<! ELEMENT ItemList (Item)+>

<! ELEMENT Item EMPTY>

<! ATTLIST Item

productNo CDATA #REQUIRED

quantity CDATA #REQUIRED

price CDATA #REQUIRED >

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 4

2.1. Data Structure, Data Content and Data Access
The DTD defines what data must be in the XML document and how that data must be
structured [i.e. content and structure]. Application software used for generating the XML
must therefore replicate these DTD rules, in addition to specifying how and from where the
data is obtained [data access] . The traditional approach in developing such software has
been to hardcode the document structure and content rules within the application, along with
the relevant data access logic.

However, this approach is flawed for two major reasons:

� Translating DTD rules into program code is both time consuming and error prone,

particularly for complex DTDs.
� Replicating DTD rules within program code increases the amount of software

maintenance required when DTDs change.

The ideal scenario would be to have the program code generated directly from the DTD. This
would enable the DTD document structure and content rules to be quickly and automatically
converted into program code, without errors. Any subsequent changes to a DTD's document
structure or content will present no major software maintenance overhead, other than having
to regenerate the code based on the new DTD.

Indeed, the strictly applied and limited syntax used within DTDs makes this possible. DTD
structure and content can be analysed by software and it is possible to create XML export
code based upon the rules determined by this analysis. However, one major problem persists.
The XML documents created by this code will not contain any data. The DTD defines what
the XML data should be and how it should be structured, but not how it is obtained.

The key to automatically generating useful XML export code from DTDs is, therefore, to place
the data access logic within the DTD itself. Indeed, if this were possible it would greatly
simplify the management and maintenance of XML generation projects, since for any given
DTD the data structure, content, and access logic could all be found and modified in one
place.

2.2. Adding Data Access Logic
DTDs are used by parsing engines to validate the content of XML documents. We must be
careful, therefore, to ensure that any data access logic added to a DTD does not interfere with
this process - the parser is only concerned with whether the data is valid, it does not care how
and from where that data was obtained. Fortunately, DTD syntax provides a mechanism for
'hiding' information from parsers - the comment tag.

Figure 2.1 illustrated both the appearance and use of comment tags within DTDs. The first
two lines of the DTD are repeated in Figure 2.2 below:

Figure 2.2 Comment Tags

As within XML, HTML, and SGML documents, comments are enclosed within opening [<!--]
and closing [-->] tags. These comments are usually used for human reference, such as
describing the creation and revision history of the document, or for explaining code within the
document.

<!-- Purchase Order DTD -->

<!-- Created on 05/06/2001 by J.Bloggs -->

....

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 5

Whilst parsers tend to ignore comment tags within a DTD, the Routine Generator function
certainly does not. Indeed, the use of certain 'specialised' comment tags is necessary in order
to add the required data access logic to a DTD.

But what is a 'specialised' comment tag? Well, they are not inherently different from any other
comment tag. The only difference is that they contain a 3 character identifier immediately

1

after the opening tag, and the data enclosed within the tags adheres to certain rules. The 3
character identifier is used to indicate to the Routine Generator that data access logic is
enclosed within the tag. Three types of 'specialised' comment tags are used. The identifiers,
and their purpose, are summarised in Table 2.1 below:

Identifier Purpose of Tag
%PM To indicate parameters required to create the XML document

%EL To specify the data access function name for a given element and the variable

reference to be used for holding attribute values

%AF To specify the executable code for a given data access function

Table 2.1 Summary of 'specialised' comment tag purpose

Each of these will now be examined in greater detail.

1
 Whitespace characters between the opening comment tag and the 3 character identifier is optional. At least one

whitespace character must separate the identifier from all subsequent data within the comment tag.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 6

2.3. The %PM Tag
The %PM tag is used to indicate any parameters which may be passed to the generated
export routine in order to create the XML document. The tag should only appear once within a
single DTD. The tag structure is as follows:

The example DTD in Figure 2.1 defines the structure and content of a simplified purchase
order XML document used by a fictitious retail company. To generate such a document, an
application will need to identify individual purchase orders held within the company's own
database . It is likely that, within the retail company, purchase order information will be
accessible by purchase order number [PONumber in the DTD]. The application would,
therefore, pass a specific purchase order number to the export routine. The access functions
(see 2.5.) used within the routine would then use this parameter to extract all the necessary
data to generate the XML document. Figure 2.3 illustrates the inclusion of a %PM tag within
the example DTD.

Figure 2.3 The %PM Tag

Only one %PM tag should be declared within a DTD. When more than one %PM tag is
provided, the first declaration is binding and later declarations ignored.

The above example involves only one parameter. However, the only limit to the number of
parameters passed is that imposed by your M system.

Parameters should be delimited within the %PM tag by white space.

Parameters will be passed, by value, to the generated routine and coded within the routine
header in the same order as they appear in the %PM tag.

If the same parameter is declared more than once in a single %PM tag, only the first
declaration is binding and all subsequent declarations ignored.

Parameter names should be in accordance with the parameter naming constraints of your M
system.

As an example of multiple parameter passing, suppose a company wished to generate an
XML document containing all purchase orders placed within a given time period. In this
instance, a 'from date' and 'to date' would be more appropriate parameters than purchase
order number. The access functions could then use these dates to filter out any records
where the order date does not fall between them. The tag would look as follows:

<!--%PM fromDate toDate -->

If the XML document was to only contain orders for a specific product item, then product
number would be passed as a parameter too:

'<!--' S? '%PM' (S Param)* S? '-->'

 Param ::= Parameter Name

<!-- Purchase Order DTD -->

<!-- Created on 05/06/2001 for ABC Retailers Inc -->

<!--%PM poNo -->

<! ELEMENT purchaseOrder (shipTo, shipDate, ItemList)>

<! ATTLIST purchaseOrder

 PONumber CDATA #REQUIRED

 customerID CDATA #REQUIRED

customerName CDATA #IMPLIED

 orderDate CDATA #REQUIRED>

...

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 7

<!--%PM fromDate toDate prodNo -->

The %PM tag can be placed anywhere within the DTD, although it is usual to place it near the
top of the document.

However, the %PM may not appear within a DTD at all. For example, suppose the same
company wished to generate an XML document containing all purchase orders held within
their system. Since no filtering or access of specific records is required, there is no need to
pass any parameters to the export function. The access functions would simply loop through
every purchase order record on the database. In this instance, the %PM tag can be left out of
the DTD altogether.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 8

2.4. The %EL Tag
The %EL tag is used to specify the data access function name for a given element and the
variable reference to be used for holding that element's attribute values and PCDATA
content. The tag structure is as follows:

The ACCESS attribute is used to associate an element with an access function (see 2.5.)
embedded within the DTD. This function will be used to access and format the data to be
placed within the attribute values and PCDATA content of the element.

The VARREF attribute specifies the variable name to be used within the associated ACCESS
function for storing the required data.

Each element within the DTD must have a %EL tag defined. The %EL tags may appear
anywhere in the DTD, although it is usual to place them next to their associated element
declarations.

Each %EL tag must have the 'ACCESS' attribute defined. i.e. Every element must have a
data access function specified, even if no attributes or PCDATA content are defined for it.

Each %EL tag, where the element contains attributes or PCDATA content, must have the
'VARREF' attribute defined. i.e. Every element which requires populating with data must have
a variable reference defined in which that data can be stored by the access functions.

Only one %EL tag is definable per element. When more than one %EL tag is declared for the
same element, the first declaration is binding and later declarations are ignored.

Figure 2.4 illustrates the inclusion of the %EL tags within a portion of the example DTD. The
full illustration can be found in Appendix B.

Figure 2.4 The %EL Tag

'<!--' S? '%EL' S ElName S 'ACCESS=' AFName (S 'VARREF=' VRef)? S? '-->'

 ElName ::= Element Name

AFName ::= Access Function Name
 VRef ::= Variable Reference

<!-- Purchase Order DTD -->

<!-- Created on 05/06/2001 for ABC Retailers Inc -->

<!--%PM poNo -->

<! ELEMENT purchaseOrder (shipTo, shipDate, ItemList)>

<!-- %EL purchaseOrder ACCESS=getOrder() VARREF=ord -->

<! ATTLIST purchaseOrder

PONumber CDATA #REQUIRED

customerID CDATA #REQUIRED

customerName CDATA #IMPLIED

orderDate CDATA #REQUIRED>
...
...

<! ELEMENT ItemList (Item)+>

<!-- %EL ItemList ACCESS=getList() -->

<! ELEMENT Item EMPTY>

<!-- %EL Item ACCESS=getItem() VARREF=item -->
...
...

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 9

Access function names and variable references should NOT be enclosed within single or
double quotes.

The access function name should match a corresponding %AF tag (see 2.5.) defined within
the DTD.

Access function names declared in %EL tags must be of the same case as those in the
corresponding %AF tags.

The access function name may or may not include a parameter container [i.e. end with the '(
)' characters]. The Routine Generator will add these automatically, if omitted.

The access function name must not be longer than 8 characters, excluding any closing '()'
characters.

The access function name should not contain any parameter names within the parameter
container [e.g. 'getOrder(poNo)']. The Routine Generator will strip out any parameter names
found.

The variable reference may be either a local or global variable, and may include subscripts.
All local variable references will be automatically 'Newed' at the start of the export routine,
whilst all global variables will be 'Killed' at the beginning and end.

The variable reference name should be in accordance with the variable naming constraints of
your M system. In order to avoid any potential clash with system variables used by the
Routine Generator function, it is recommended that any local variable references do NOT
begin with a '%' character.

Variable reference names declared in %EL tags must be of the same case as used in the
corresponding access functions.

Different elements should not be given the same variable reference name.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 10

2.5. The %AF Tag
The %AF tag is used to specify the executable code for a given data access function. The tag
structure is as follows:

The access function name is placed on the same line as the opening tag and '%AF'
declaration. The closing tag is also placed on it's own line. All intermediate lines are treated
as executable code, as per a standard M routine.

Figure 2.5 illustrates the use of %AF tags within a portion of the example DTD. The full
illustration can be found in Appendix B.

Figure 2.5 The %AF Tag

An access function must be included within the DTD for every element, even if that element
has no attributes or PCDATA content.

The %AF tags may appear anywhere in the DTD, although it is usual to place them next to
their associated element declarations.

The access function name may or may not include a parameter container [i.e. end with the '(
)' characters]. The Routine Generator will add these automatically, if omitted.

The access function name must not be longer than 8 characters, excluding any closing '()'
characters.

The access function name should not contain any parameter names within the parameter
container [e.g. 'getOrder(poNo)']. The Routine Generator will strip out any parameter names
found.

The Routine Generator does not parse any of the embedded code. It is up to the developer to
ensure errors do not occur within this code, or at least that any errors can be trapped within

'<!--' S? '%AF' S AFName S? '' '
' (CodeLn '' '
')+ S? '-->'

 AFName ::= Access Function Name

 CodeLn ::= Executable Line of Code
'' '
' ::= Carriage Return / Line Feed

<!-- Purchase Order DTD -->

<!-- Created on 05/06/2001 for ABC Retailers Inc -->

<!--%PM poNo -->

<! ELEMENT purchaseOrder (shipTo, shipDate, ItemList)>

<!-- %EL purchaseOrder ACCESS=getOrder() VARREF=ord -->

<! ATTLIST purchaseOrder

 PONumber CDATA #REQUIRED

 customerID CDATA #REQUIRED

customerName CDATA #IMPLIED

 orderDate CDATA #REQUIRED>

<!-- %AF getOrder()

 n rec k ord

 s rec=$g(^POrders(poNo))

 i rec="" q 0

 s ord("at","PONumber")=poNo

 s ord("at","customerID")=$p(rec,"*",1)

s ord("at","customerName")=$p(rec,"*",2)

s ord("at","orderDate")=$p(rec,"*",3)

q 1

-->

...

...

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 11

the application. It is recommended that this code be written using your usual M routine editor,
and subsequently copied into the DTD.

Labels, goto commands, block structuring, comments, and external routine/function calls are
all allowed. Syntax rules are as per your M system.

In order to avoid any potential clash with system variables it is recommended that any local
variables used within the access functions do NOT begin with a '%' character.

Access functions are called as extrinsic functions [e.g. 'if $$getorder() do...'] by the export
routines. Any QUIT commands within the function must therefore have an argument of 0 or 1 [
or a $TEST equivalent]. '0' is used to indicate the function has failed in obtaining all the
required data, whereas '1' is used to indicate the function has been successful.

2.5.1. Populating The Variable Reference
The purpose of a data access function is to locate and format the required data for a given
element, placing it within the variable reference defined by the VARREF attribute of the
element's %EL tag (see 2.4.).

An element can contain 2 types of data: attribute values and PCDATA content. These will
be discussed in turn.

2.5.1.1. Attributes
Populating attribute values is simple. Once an attribute's data has been accessed and
formatted as required, it is stored in an appropriate node of the variable reference as shown
below:

set variable reference("at",attributeName)=data

For a local variable reference [e.g. ord], this might look as follows:

set ord("at","customerID")=$p(rec,"*",1)

And for a global variable reference [e.g. ^tmp($j,"ord")]:

set ^tmp($j,"ord","at","customerID")=$p(rec,"*",1)

The "at" node indicates that the subnodes correspond to attributes of the element. This is
necessary to separate the attribute values from any PCDATA content (see 2.5.1.2.).

Ensure that the spelling of attribute names within variable references correspond exactly to
their spelling within the ATTLIST declarations of the DTD.

For any attribute values which may exceed the maximum string capacity of your M system,
you can break up the string by specifying further sequential sub-nodes within the variable
reference:

set variable reference("at",attributeName,0..n)=data

The export routine will assemble the attribute value by concatenating the sub-nodes onto the
attribute's parent node.

It is up to the developer to ensure that all required attributes are populated within the variable
reference. However, where default values are defined for an attribute, the generated export
routines will automatically populate the XML with these defaults if no other value is specified
within the access function code.

2.5.1.2. PCDATA
Populating an element with PCDATA content is also very easy. This time, the data is stored
against the "ct" node of the element's variable reference:

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 12

set variable reference("ct")=data

For a local variable reference [e.g. shipDate], this might look as follows:

set shipDate("ct")=str

And for a global variable reference [e.g. ^tmp($j,"shipDate")]:

set ^tmp($j,"shipDate","ct")=str

For any data which may exceed the maximum string capacity of your M system, you can
break up the string by specifying further sequential sub-nodes within the variable reference:

set variable reference("ct",0..n)=data

The export routine will assemble the PCDATA by concatenating the sub-nodes onto the
parent node.

2.5.2. Repeatable Elements
The access function illustrated in Figure 2.5. was for a non repeatable element: the root
element 'purchaseOrder'. In this instance, data access was simple since it only involved
accessing a single node of a database global.

But what about the access logic for repeatable elements, where each instance of the element
is represented by a separate node within the database? How do we code the access logic for
such elements?

Figure 2.6. illustrates how this is done for the 'Item' element of the sample DTD:

Figure 2.6 Accessing data for repeatable elements

<!-- Purchase Order DTD -->

<!-- Created on 05/06/2001 for ABC Retailers Inc -->

<!--%PM poNo -->

<! ELEMENT purchaseOrder (shipTo, shipDate, ItemList)>

...

...
<! ELEMENT ItemList (Item)+>

<!-- %EL ItemList ACCESS=getList() -->

<!-- %AF getList()

 s prodNo=""

q 1

-->

<! ELEMENT Item EMPTY>

<! ATTLIST Item

productNo CDATA #REQUIRED

quantity CDATA #REQUIRED

price CDATA #REQUIRED>

<!-- %AF getItem()

 k rec,item

s prodNo=$o(^POrders(poNo,1,prodNo))

i prodNo="" q 0

s rec=$g(^POrders(poNo,1,prodNo))

s item("at","productNo")=prodNo

s item("at","quantity")=$p(rec,"*",1)

s item("at","price")=$p(rec,"*",2)

q 1

-->

...

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 13

As Figure 2.6. demonstrates, the access code for repeatable elements is not too dissimilar to
that for non-repeatable elements. The key to getting the logic correct is to initialise a looping
variable within the access function of the parent element.

In this case, 'Item' is the repeatable element and 'ItemList' it's parent element. The access
function of 'ItemList' [$$getList()] sets the 'prodNo' variable to null. By analysing the DTD
syntax, the Routine Generator function will determine that 'Item' is a repeatable element
within ItemList. Consequently, the 'Item' access function [$$getItem()] will be repeatedly
called until the function returns a $TEST value of 0. Each time it is called, '$$getItem()' uses
the 'prodNo' variable to loop to the next node of the database structure. Each time a new
node of the database is accessed, an 'Item' element is created and the function returns a
$TEST value of 1. When all nodes have been traversed, the function QUITS with a $TEST
value of 0. This loop is then broken and the export routine continues through the rest of the
document structure.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 14

2.6. Putting It All Together
Together, the %PM, %EL and %AF tags provide a simple and flexible framework for adding
data access functionality to a DTD. A full illustration of the example DTD enhanced with these
tags can be found in Appendix B.

Using DTDs in this manner has a number of benefits:

� The management and maintenance of XML generation projects is greatly simplified, since

for any given DTD the data structure, content, and access logic can all be found and
modified in one place.

� The software developer need not be an expert in XML. The Routine Generator software

takes care of the DTD syntax and document flow rules to create export routine code
which is both consistent with your DTDs and error-free.

� The amount and complexity of program code required to create XML documents is

greatly reduced. The developer need not worry about creating the necessary tag
structures, attribute lists, or element content. All that is required is that the relevant data is
accessed and placed within the specified variable references.

� Consequently, the time spent developing and maintaining your XML generation software

is dramatically reduced, enabling you to meet deadlines and control costs.

So how does the Routine Generator function convert these DTDs into XML export code? This
is the subject of the next section, where the function itself will be described.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 15

3. The Routine Generator Function
The Routine Generator function creates XML export routines based upon the contents of
DTDs enhanced with data access logic (see Section 2.). The function is written in ANSI
Standard Mumps [1990] and will run on all major Mumps implementations. Although it is an
integral component of the Lastic DTD Project Manager [L-DPM], the Routine Generator
function is also available separately without requiring any Lastic GUI software to be installed
on your system.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 16

3.1. Global Structure
The Routine Generator function requires that data-access-enhanced DTDs are already
imported into your M database. The L-DPM provides a simple GUI-based facility for importing
the files into the required global structure [see the Software User's Guide]. However, if the
Routine Generator function, only, is installed on your system, the global needs to be
populated by the developer. Figure 3.1 shows the required global structure for an imported
DTD.

 Figure 3.1 Imported DTD global structure

The import global structure for the sample DTD 'purchaseOrder.dtd' is shown in Appendix C.

The global subscript 'project_code' is a maximum 10-character code used to arrange and
cluster DTDs into distinct project groups. A business or organisation may be involved in
several different XML projects at any one time. It is possible [though not recommended] that
a single DTD name may be used within more than one project, and that the contents of the
DTD is different in each case. Using the 'project_code' subscript ensures that the Routine
Generator function can easily accommodate this eventuality. The L-DPM also makes use of
the concept of a project to simplify the management and maintenance of your DTDs.

The subscript 'dtd_name' is of unlimited length and is used to identify the individual DTDs
within a project. Although not strictly necessary, this name should be the same as the source
DTD file, minus the '.dtd' file extension. Thus, the sample 'purchaseOrder.dtd' file would be
held with the 'dtd_name' subscript of 'purchaseOrder'. The L-DPM automatically extracts the
'dtd_name' subscript from the source DTD file during the import process.

A DTD name cannot be duplicated within a project. The L-DPM asks for confirmation that any
existing data can be overwritten for a given DTD during the import process, but the Routine
Generator function itself does not.

The Routine Generator function creates additional nodes of the ^xmlDTD global during the
generation process. Since these nodes are only used internally by the function it is not
necessary for the developer to understand their content or meaning. However, Appendix F
provides detailed information on the global layouts.

The Routine Generator function also makes use of another global [^xmlRTN], which
contains skeleton code particles used in generating the export routines. The function will
automatically generate this global within your M system the first time it is run. Again, it is not
necessary for the developer to have any knowledge of the global layouts, but details can be
found in Appendix G.

One important point to note is that if the Routine Generator encounters and returns an error
during the generation process (see 3.5.) global nodes 1-6 [i.e. ^xmlDTD(project_code,

dtd_name, 1..6)] are deleted, leaving only the import global node 0 [i.e. ^xmlDTD(project_code,
dtd_name, 0)].

^xmlDTD(project_code, dtd_name, 0, 1) = DTD line 1

...
^xmlDTD(project_code, dtd_name, 0, n) = DTD line n

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 17

3.2. Calling The Function
The Routine Generator function is called as shown below in Figure 3.2.

 Figure 3.2 Routine Generator function call

For details of the 'project_code' and 'dtd_name' parameters see section 3.1. Note that the
import global node [i.e. ^xmlDTD(project_code, dtd_name, 0)] must exist before this function is
called (see 3.1.), otherwise an error will be returned.

The 'root_element' parameter specifies the root element of the selected DTD. The Routine
Generator makes use of this parameter in order to analyse the document flow of the DTD
from the appropriate 'start point', and to ensure that the generated export code accurately
reflects this flow. The specified root element must exist within the DTD, otherwise an error will
be returned.

The 'routine_name' parameter specifies the name of the routine in which the generated export
code will be saved within your M system. The routine name must begin with one alpha
character, and may only contain alpha and numeric characters.

If the function completes successfully, the specified routine will be stored within your M
system and a null value returned. If an error is raised by the function a tilde ["~"] delimited
string containing error code, description and detail will be returned [For more information on
returned error types see section 3.5.]. All errors are treated as 'fatal' and will terminate the
function immediately without saving the routine, deleting any data which may have been
generated within global nodes 1-6 of ^xmlDTD [i.e. ^xmlDTD(project_code, dtd_name, 1..6)].

Set r = $$%RGEN^xmlgen(project_code,dtd_name,root_element,routine_name)

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 18

3.3. Function Stages
When called, the Routine Generator function initially checks that the 'project_code',
'dtd_name' and 'routine_name' parameters meet the constraints described in sections 3.1.
and 3.2, returning an error message and terminating if appropriate.

Otherwise, assuming no other errors are encountered, the Routine Generator function
continues through 6 distinct processing stages. These will now be described in turn.

3.3.1. Stage 1 - Restructuring + Normalisation
As stated in section 3.1. the Routine Generator function requires that data-access-enhanced
DTDs be stored in a sequential node structure within global [^xmlDTD(project_code, dtd_name,

0)]. Appendix C provides an example of this for the sample DTD 'purchaseOrder.dtd'.

Stage 1 of the Routine Generator function restructures these global nodes to ensure that the
data is suitable for subsequent analysis. This includes placing the contents of each opening
['<'] and closing ['>'] tag, as well as any external parameter entity references (see 3.3.2), on
individual nodes, normalising white space, removing leading and trailing spaces, removing
any comments not containing data access logic (see 2.2.), and ensuring each node is
structured such that it's contents can subsequently be read and interpreted in latter stages.

At the end of stage 1, global node [^xmlDTD(project_code, dtd_name, 1)] has been created,
containing the restructured and normalised contents of the imported DTD (see Appendix F).

3.3.2. Stage 2 - Parameter Entity Resolution
Parameter entities are used in DTDs as shortcuts. Internal parameter entities are often used
to include element and attribute list declarations as groups which can subsequently be
referred to as single entities. External parameter entities are used to reference other DTDs,
allowing what would otherwise be extremely complex DTDs to be separated into smaller,
reusable and more logical documents, which can then subsequently be 'merged' by XML
parsers for validation purposes.

In order for the Routine Generator function to be able to create export routines based upon
DTD content, it is essential that all parameter entities are resolved before element and
attribute declarations are analysed. Stage 2 performs this task.

Firstly, all internal parameter entity references within global node [^xmlDTD(project_code,

dtd_name, 1)] are resolved.

No validation of internal entity references or declarations is performed. An internal entity
reference is simply substituted with the replacement text defined in it's declaration. If a
reference exists where there is no corresponding declaration, no substitution takes place and
the reference remains within the code. Although an error is not generated, it is likely that this
will lead to the generation of erroneous export code since the element or attribute declaration
will be incomplete. If a declaration exists where there are no corresponding references, the
declaration is simply ignored and will have no impact on the function's subsequent
processing.

Secondly, all external parameter entity references within global node [^xmlDTD(project_code,

dtd_name, 1)] are resolved.

The external parameter entity declaration contains a system literal specifying the URI of the
referenced DTD. The DTD name is determined from the URI [URI minus the file path and file
extension ::= referenced_dtd_name] and a check is made to ensure that the DTD has
already been imported into the current project. i.e. that global node [^xmlDTD(project_code,

referenced_dtd_name, 0)] exists. If not, an error is raised and the function terminates. In this
instance, the referenced DTD will need to be imported into the appropriate global structure
and the function ran again. If the referenced DTD has already been imported, stage 1
processing (see 3.3.1) is performed on it with the resulting data 'merged' into the 'parent'
DTD's global structure in place of the entity reference and declaration.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 19

There is no limit to the number of external parameter entity references which may appear
within a DTD, and also no limit to the number of levels of referencing. i.e. one DTD may
reference another, which may reference another, and so on. All that is required is that the
referenced DTD has already been imported into the global structure of the project containing
the 'parent' DTD.

However, external parameter entity references CANNOT be recursive. i.e. DTD 'A' references
DTD 'B' which in turn references DTD 'A'. If this is the case, an error will be raised and the
function terminated.

Note that if a DTD changes, any export routines based upon 'parent' DTDs which reference it
will need to be regenerated, since the Routine Generator function only makes a 'copy' of the
referenced DTD. It does not maintain pointers to it.

At the end of stage 2, global node [^xmlDTD(project_code, dtd_name, 1)] contains the
parameter-entity-resolved contents of the imported DTD (see Appendix F).

3.3.3. Stage 3 - Document Content Analysis
The third stage of the Routine Generator function analyses global node [^xmlDTD(

project_code, dtd_name, 1)] in order to determine the content of the individual ELEMENT,
ATTLIST, %PM, %EL and %AF tags within it. This data is read, interpreted and stored within
global node [^xmlDTD(project_code, dtd_name, 2)].

The content specification of each ELEMENT tag is analysed, and the sequencing, grouping
and repetition of it's immediate child elements determined. Any PCDATA content declared for
the element is also noted. If more than one ELEMENT tag is declared for the same element
name, the first declaration is binding and later declarations ignored.

The ATTLIST declaration for each element is decomposed and the default declaration,
attribute type and any defined default values are stored against the element and attribute
names. When more than one ATTLIST declaration is provided for a given element, the
contents of all those provided are merged. When more than one definition is provided for the
same attribute of a given element, the first declaration is binding and later declarations
ignored.

Parameters within the %PM tag are stored sequentially in the order in which they are
declared. When more than one %PM tag is provided, the first declaration is binding and later
declarations ignored. Similarly, if the same parameter name is declared more than once in a
single %PM tag, only the first declaration is binding and all subsequent declarations ignored.

The VARREF and ACCESS attribute values of the %EL tag are stored against the relevant
element name. Access function names are formatted as described in section 2.4. If more than
one %EL tag is declared for the same element name, the first declaration is binding and later
declarations ignored.

The data access code defined within the %AF tag is stored against the relevant access
function name. Access function names are formatted as described in section 2.5. If more than
one %AF tag is declared for the same access function name, the first declaration is binding
and later declarations ignored.

See Appendix F for further details of the global [^xmlDTD(project_code, dtd_name, 2)] layout.

3.3.4. Stage 4 - Data Access Validation
Stage 4 of the Routine Generator function provides a limited validation of the data access
functionality added to the DTD, by analysing the contents of global node [^xmlDTD(

project_code, dtd_name, 2)].

Each element within the DTD is checked to determine whether it has a data access function
declared [in it's %EL tag], and that the code for the declared access function is defined [in a

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 20

%AF tag]. If not, an error is raised and the function terminated. This is true for every element
within the DTD, even if no attributes or PCDATA content are defined for it.

Each element with declared attributes or PCDATA content is checked to determine whether it
has the 'VARREF' attribute defined [in it's %EL tag]. If not, an error is raised and the function
terminated.

The Routine Generator function does NOT validate any of the data access code within the
%AF tags. It is up to the developer to ensure that this code is error free.

ELEMENT and ATTLIST declarations are also NOT validated. Again, it is up to the developer
to ensure the validity of these tags' contents.

3.3.5. Stage 5 - Document Flow Analysis
Stage 3 (see 3.3.3) of the Routine Generator function analysed the contents of each
individual element within the DTD to determine the sequencing, grouping and repetition of it's
immediate child elements. Stage 5 takes this analysis one stage further by merging the data
for each of the individual elements such that the document flow can be traced, beginning with
the root element and continuing throughout the entire element hierarchy.

Firstly, the specified root element (see 3.2.) is checked to ensure that it is present within the
DTD. If not, an error is raised and the function terminated.

Subsequently, beginning at the root element, the entire element hierarchy is traversed to
determine the element sequencing, grouping and repetition constructs which constitute the
document flow. This data is subsequently used within stage 6 (see 3.3.6) for generating
document flow code which reflects the structural rules of the DTD.

The document flow analysis also checks for the presence of element recursion. i.e. elements
which are [immediate or non-immediate] descendants of themselves. Although used in some
DTDs, element recursion is not supported by the Routine Generator function. If detected, an
error is raised and the function terminated.

At the end of stage 5, global node [^xmlDTD(project_code, dtd_name, 3)] has been created,
containing a document structure representation of the imported DTD (see Appendix F).

3.3.6. Stage 6 - Export Routine Generation
The 6

th
 and final stage of the Routine Generator function uses the data from the document

content (stage 3 - see 3.3.3.) and flow (stage 5 - see 3.3.5.) analyses to generate the export
routine and store it within your M system.

The document flow routine reflecting the DTD's element hierarchy is assembled 'piece by
piece' using the skeleton code particles in global [^xmlRTN] - see Appendix G. Each node
within the element hierarchy is matched against a specific code particle based upon the
sequencing, grouping and repetition properties of that node. The skeleton code particles are
then 'fleshed out' with the necessary block structuring, data access and output function calls,
as well as with the embedded skeleton code particles of child nodes. This continues
throughout the element hierarchy until all nodes have been traversed.

When complete, the document flow routine is stored in global node [^xmlDTD(project_code,
dtd_name, 5)] - see Appendix F.

The next step is to create the overall export routine by grouping the generated document flow
routine with the access functions embedded within the DTD, as well as creating the routine
headers. This data is stored within global node [^xmlDTD(project_code, dtd_name, 6)] - see
Appendix F.

Finally, the export routine is stored within the M system using a ZSAVE command on the
specified routine name (see 3.2.). Appendix D provides an example of a generated export routine for

the sample DTD 'purchaseOrder.dtd'.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 21

The Routine Generator function itself will automatically overwrite any existing routine with the
specified routine name. The L-DPM, however, will check and ask for confirmation that an
existing routine can be overwritten, before it calls the Routine Generator function.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 22

3.4. Function Limitations
Many, but not all, of the limitations of the Routine Generator function have been discussed in
previous sections. The purpose of this section, however, is to provide a single point of
reference for the developer to discover what the function cannot do.

3.4.1. Recursion
Recursive external parameter entity references [i.e. DTD 'A' references DTD 'B' which in turn
references DTD 'A'] are not supported (see 3.3.2.). This is the case whether DTD 'A' is an
immediate or 'distant' descendant of DTD 'B'. If this situation arises, an error will be raised
and the function terminated.

Recursive element hierarchies [i.e. where an element is an immediate or non-immediate
descendant of itself] are also not supported. This is the case whether the recursive reference
occurs within a single DTD or within any descendant DTDs. In this instance, an error will be
raised and the function terminated.

3.4.2. String Literal Delimiters
String literals are used within DTDs for specifying the content of internal entities, the values of
attributes, and external identifiers. The XML standard allows for either the single quote ['] or
double quote ["] character to be used as a delimiter for such string literals. However, the
Routine Generator function requires that only the double quote ["] character be used.

3.4.3. Conditional Sections
Conditional sections are portions of a DTD which are included in, or excluded from, the logical
structure of the DTD based on the keyword [i.e. the 'INCLUDE' and 'IGNORE' tags] which
governs them.

The Routine Generator function does not support conditional sections of DTDs.

3.4.4. Well-formedness & Validity
The Routine Generator function cannot guarantee that XML documents created by the
generated export routines will be either well-formed or valid, since the data is not parsed
during output. The XML data for each element is simply written, to whichever device has been
specified (see 4.2.), immediately after the corresponding access function has been called.

It is up to the developer to ensure that all the required data for an XML document is available
and/or calculable from the M database prior to calling the export routines, and that the defined
access functions extract this data correctly.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 23

3.5. Error Types
Previous sections have described the conditions under which the Routine Generator function
will raise errors during processing. The purpose of this section is to provide a list of all the
error types which may be encountered.

If an error is raised by the function a tilde ["~"] delimited string containing error code,
description and detail will be returned. All errors are treated as 'fatal' and will terminate the
function immediately without completing the generation and storage of the export routine
within the M system, deleting any data which may have been generated within global nodes
1-6 of ^xmlDTD [i.e. ^xmlDTD(project_code, dtd_name, 1..6)].

Table 3.1 lists all error types raised by the Routine Generator function.

Error Code

Description

Detail

Reason for Error

001

Project code must be specified

A null project code has been specified within
the function call parameters

002

Project code not recognised

Project code

No such project code exists
[i.e. '$d(^xmlDTD(project_code)]

003

DTD name must be specified

A null DTD name has been specified

004

Invalid routine name

Routine name

The routine name specified is not valid
[i.e. 1 alpha followed by alphanumerics]

101

DTD name not recognised

DTD name

No such DTD name exists
[i.e. '$d(^xmlDTD(project_code, dtd_name))]

201

Referenced DTD not recognised

Referenced DTD
name

DTD referenced by external parameter entity
has not been imported into project
[i.e. '$d(^xmlDTD(project_code, dtd_name, 0))
]

202

Recursive DTD reference

Recursive DTD
name

A DTD has been recursively referenced
through external parameter entity declarations.
[e.g. DTD 'A' references DTD 'B' which in turn
references DTD 'A']

401

Element access function not
declared

Element name

An element has no access function [ACCESS]
declared for it within a %EL tag

402

Element access function not
defined

Element name

An element's declared access function has not
been defined within a %AF tag

403

Element variable reference not
declared

Element name

An element has no variable reference [
VARREF] declared for it within a %EL tag

501

Root element not recognised

Root element

The root element specified within the function
call parameters does not exist within the DTD

502

Recursive element hierarchy

Element name

An element is recursively referenced within the
DTD [i.e. an element is an immediate or non-
immediate descendant of itself]

Table 3.1. Error Types

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 24

4. The Export Routines
Section 2 described how DTDs may be enhanced with data access logic using a limited set of
'specialised' comment tags. Section 3 then described how the Routine Generator function
creates XML export routines based upon the contents of these enhanced DTDs. The focus of
this section is on the generated export routines themselves - what they do and how to use
them within your business applications.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 25

4.1. Calling The Routines
The generated document flow routine, along with the access functions defined for a DTD, are
saved within the M system using the routine name passed as a parameter to the Routine
Generator function (see 3.2.). Appendix D provides an example of a generated export routine

['xePOrder'] for the sample DTD 'purchaseOrder.dtd'.

Figure 4.1 illustrates the structure of the document flow routine header within the export
routine.

Figure 4.1 Document flow routine header

The comma-delimited parameter list corresponds to that declared within the %PM tag of the
DTD (see 2.3.), with the sequence maintained. If a %PM tag is not declared within the DTD,
the resulting parameter list will be null.

The document flow routine header represents the calling point for the export routine. Export
routines should be called within applications using a DO command, as illustrated in Figure
4.2.

Figure 4.2 Export Routine Call

If no parameters are passed [i.e. 'param_list' is null], the parameter containers should still be
included in the routine call [i.e. ' DO %ext^routine_name()'].

%ext(param_list) ;document flow routine

param_list ::= comma delimited list of

parameters as defined

within the DTD's %PM tag

DO %ext^routine_name(param_list)

 routine_name ::= name of routine in M system

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 26

4.2. Initialisation
Before an export routine is called within an application, a number of output 'options' for the
generated XML document must be set. This is done using the initialisation routine call shown
in Figure 4.3.

 Figure 4.3 Initialisation Routine Call

'xmllib' is a library routine which is shipped along with the Routine Generator function. Not
only does it contain the initialisation routine, it also contains an output routine called by all
generated export code. 'xmllib' must, therefore, be distributed along with the generated export
routines when applications are deployed.

Sections 4.2.1. - 4.2.3. describe the three parameters of the above routine call.

4.2.1. Output Device ID
The generated export routines write data to a specified output device indicated by the device
ID provided [device]. The device ID is stored within a variable ['%dv'] by the initialisation
routine and subsequently referenced [i.e. USE %dv] by the export routines each time data is
written.

Depending upon the Mumps implementation on the target system, the device ID may be a
device number or file path, etc. The device does not have to be a file, it could be a TCP/IP
port, a serial line, a printer or any other device which accepts serial text data.

The specified device must be open before the initialisation routine is called, and closed once
the export routine has completed.

To avoid a conflict of variable names, DO NOT use a '%dv' variable within the calling
application.

Upon completion of the export routine the '%dv' variable will still be set.

4.2.2. Indentation/Line Feed Settings/Escaping
By default, the export routines will generate XML documents in which an element and all it's
attributes are written on a single line, without any indentation. Whilst this presents no
problems for a parser, the XML is not easily read by the human eye.

To produce XML in a more human-readable form, the initialisation routine provides options for
indenting subsequent nodes of the document structure. To increase readability still further,
each attribute of an element may also be written to a separate line.

Furthermore, if the developer does not want to handle generating escapes for the reserved
characters of <’>” or & then, setting the auto-escape parameter will cause the software to
generate escapes automatically when writing the XML document.

The second parameter of the initialisation routine [indent] is an array, passed by reference,
containing the indentation , line feed properties and escape handling requirements of the XML
document.

Table 4.1. lists the definable values and what they indicate.

DO %init^xmllib(device, .indent, .prolog)

 device ::= Output Device ID

 indent ::= Indentation/Line Feed Settings/Escaping
 prolog ::= XML Document Prolog

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 27

Node Value Indicates

indent(1) 'T' elements to be indented using Tab character

 'S' elements to be indented using Space character

 null/undefined/any other value elements not to be indented

indent(2) 'Y' each attribute of an element to be written to separate line

indent(3)

null/undefined/any other value

“Y”

null/undefined/any other value

every attribute of an element to be written on same line

auto-detect reserved characters and generate escapes

Escapes must be handled by the developer

Table 4.1. The Indentation/Line Feed Settings Parameter

Node 1 of the array is stored within a variable ['%in'] by the initialisation routine and
subsequently referenced by the export routines each time a new element is written. Using
tabbed indentation ['T'], each child node of the element hierarchy is indented from it's parent
by a single ASCII-9 character. Spaced indentation ['S'] mimics tabbed indentation, but uses
six ASCII-32 characters instead of the single ASCII-9 character per node indentation. Spaced
indentation is useful in UNIX systems where filtering has been set on tab characters.

Node 2 of the array is stored within a variable ['%lf'] by the initialisation routine and
referenced by the export routines each time a new attribute is written. If set to 'Y', individual
attributes are written to separate lines, indented to the same position as the element to which
they belong.

Node 3 of the array is stored within a variable [%es] by the initialisation routine and
referenced by the export routine library whenever data (attributes or PCDATA) is to be
written. If set to ‘Y’, all data is checked for the presence of reserved characters (<’>” and &)
and, if detected, will be converted to escapes of < ' > " and &
respectively.

To avoid a conflict of variable names, DO NOT use '%in' '%lf' or ‘%es’ variables within the
calling application. Upon completion of the export routine the '%in' '%lf' and ‘%es’ variables
will still be set.

4.2.3. Document Prolog
An XML document's prolog is the section of the document which appears before the root
element. This usually includes the 'XML' and 'DOCTYPE' declarations.

Figure 4.4 illustrates the document prolog of a purchase order XML document based upon the
sample DTD 'purchaseOrder.dtd'.

Figure 4.4 The XML Document Prologue

<?xml version="1.0"?>

<!DOCTYPE purchaseOrder SYSTEM "purchaseOrder.dtd">

...

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 28

The third parameter of the initialisation routine [prolog] is an array, passed by reference,
containing the required prolog for the XML document. Each line of the prolog should be stored
within a separate node of the array.

The initialisation routine will loop through the array and write it's contents to the specified
output device (see 4.2.1.). The export routine, called immediately after the initialisation
routine, will then write the data for the root element, and continue through the element
hierarchy.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 29

4.3. Putting It All Together
Sections 4.2. and 4.3. described how an export routine, created by the Routine Generator
function, is used within an application.

To summarise, the steps are as follows:

1. Create XML document prolog and store in array [prolog]
 Store required XML document indentation/line feed settings in array [indent]

2. Open output device [device]

3. Call initialisation routine [DO %init^xmllib(device, .indent, .prolog)]

4. Call export routine [DO %ext^routine_name(param_list)]

5. Close output device

Appendix D provides an example of a generated export routine ['xePOrder'] for the sample
DTD 'purchaseOrder.dtd'. Appendix E demonstrates how this routine would be used within a
calling application.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 30

5. Distribution Files
Table 5.1. lists the routines distributed with the Routine Generator function.

Routine Name Contains

xmlgen Routine Generator function

xmllib Library, initialisation and output functions

 Table 5.1 Distributed Routines

If the Routine Generator function is purchased independently of the L-DPM, the above
routines will be distributed within a Routine Save File.

If the Routine Generator function is purchased as part of the L-DPM software, the above
routines will be shipped, along with the L-DPM routines, within a Lastic Distribution File [see
Software User's guide].

NOTE:
'xmllib' contains library functions used by both the Routine Generator function itself, and the
generated export routines. 'xmllib' must, therefore, be distributed along with the export
routines when applications are deployed.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 31

Appendix A

Sample XML document ['purchaseOrder.xml'] based on purchaseOrder.dtd

<?xml version="1.0"?>

<!DOCTYPE purchaseOrder SYSTEM "purchaseOrder.dtd">
<purchaseOrder PONumber="01458694" customerID="132ABC" customerName="ABC Retailers"

 orderDate="21/04/2001" >

 <shipTo street="100 High Street" city="Los Angeles" state="CA" zip="90934"/>

 <shipDate>25/04/2001</shipDate>

 <ItemList>

 <Item productNo="333-333" quantity="10" price="143.95"/>

 <Item productNo="444-444" quantity="6" price="24.95"/>

 <Item productNo="555-555" quantity="25" price="12.50"/>

 <Item productNo="666-666" quantity="1" price="1020.95"/>

</ItemList>

</purchaseOrder>

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 32

Appendix B

purchaseOrder.dtd enhanced with data access logic

<!-- Purchase Order DTD -->

<!-- Created on 05/06/2001 for ABC Retailers Inc -->

<!--%PM poNo -->

<! ELEMENT purchaseOrder (shipTo, shipDate, ItemList)>

<!-- %EL purchaseOrder ACCESS=getOrder() VARREF=ord -->

<! ATTLIST purchaseOrder

 PONumber CDATA #REQUIRED

 customerID CDATA #REQUIRED

customerName CDATA #IMPLIED

 orderDate CDATA #REQUIRED>

<!-- %AF getOrder()

 n rec k ord

 s rec=$g(^POrders(poNo))

 i rec="" q 0

 s ord("at","PONumber")=poNo

 s ord("at","customerID")=$p(rec,"*",1)

s ord("at","customerName")=$p(rec,"*",2)

s ord("at","orderDate")=$p(rec,"*",3)

q 1

-->

<! ELEMENT shipTo EMPTY>

<!-- %EL shipTo ACCESS=getShip() VARREF=ship-->

<! ATTLIST shipTo

 street CDATA #REQUIRED

 city CDATA #REQUIRED

state CDATA #REQUIRED

 zip CDATA #REQUIRED>

<!-- %AF getShip()

 n rec k ship

 s rec=$g(^POrders(poNo,0))

 s ship("at","street")=$p(rec,"*",1)

s ship("at","city")=$p(rec,"*",2)

s ship("at","state")=$p(rec,"*",3)

s ship("at","zip")=$p(rec,"*",4)

q 1

-->

<! ELEMENT shipDate (#PCDATA)>

<!-- %EL shipDate ACCESS=getDate() VARREF=date-->

<!-- %AF getDate()

 k date

 s date("ct")=$p($g(^POrders(poNo)),"*",4)

q 1

-->

<! ELEMENT ItemList (Item)+>

<!-- %EL ItemList ACCESS=getList() -->

<!-- %AF getList()

 s prodNo=""

q 1

-->

<! ELEMENT Item EMPTY>

<!-- %EL Item ACCESS=getItem() VARREF=item -->

<! ATTLIST Item

productNo CDATA #REQUIRED

quantity CDATA #REQUIRED

price CDATA #REQUIRED>

<!-- %AF getItem()

 k rec,item

s prodNo=$o(^POrders(poNo,1,prodNo))

i prodNo="" q 0

s rec=$g(^POrders(poNo,1,prodNo))

s item("at","productNo")=prodNo

s item("at","quantity")=$p(rec,"*",1)

s item("at","price")=$p(rec,"*",2)

q 1

-->

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 33

Appendix C

Import global structure for purchaseOrder.dtd

^xmlDTD("ordering", "purchaseOrder", 0, 1) = "<!-- Purchase Order DTD -->"
 , 2) = "<!-- Created on 05/06/2001 for ABC Retailers Inc -->"

 , 3) = "<!--%PM poNo -->"
, 4) = "<! ELEMENT purchaseOrder (shipTo, shipDate, ItemList)>"
, 5) = "<!-- %EL purchaseOrder ACCESS=getOrder() VARREF=ord -->"
, 6) = "<! ATTLIST purchaseOrder"
, 7) = " PONumber CDATA #REQUIRED"
, 8) = " customerID CDATA #REQUIRED"
, 9) = " customerName CDATA #IMPLIED"
, 10) = " orderDate CDATA #REQUIRED>"
, 11) = "<!-- %AF getOrder()"
, 12) = " n rec k ord"
, 13) = " s rec=$g(^POrders(poNo)) "
, 14) = " i rec="" q 0"
, 15) = " s ord("at","PONumber")=poNo"
, 16) = " s ord("at","customerID")=$p(rec,"*",1) "
, 17) = " s ord("at","customerName")=$p(rec,"*",2) "
, 18) = " s ord("at","orderDate")=$p(rec,"*",3) "
, 19) = " q 1"
, 20) = "-->"

...

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 34

Appendix D

Generated export routine ['xePOrder'] for purchaseOrder.dtd

xePOrder ;XML Extract Routine;Project=ordering,DTD=purchaseOrder

 ;Copyright 2001 Lastic Ltd

 ;System version 1.00;02 Aug 2001

 ;Routine version 1;02 Aug 2001

 ;

%ext(poNo) ;document flow routine

 n %R,item,ord,date,ship

 s %R=0,%R(%R)=1

 i $$getOrder() d

 .d output^xmllib("ordering","purchaseOrder","purchaseOrder","O",0)

 .i $$getShip() d

 ..d output^xmllib("ordering","purchaseOrder","shipTo","O",1)

 ..d output^xmllib("ordering","purchaseOrder","shipTo","C",1)

 ..s %R(%R)=0

 .i $$getDate() d

 ..d output^xmllib("ordering","purchaseOrder","shipDate","O",1)

 ..d output^xmllib("ordering","purchaseOrder","shipDate","C",1)

 ..s %R(%R)=0

 .i $$getList() d

 ..d output^xmllib("ordering","purchaseOrder","ItemList","O",1)

 ..f q:$$getItem()=0 d

 ...d output^xmllib("ordering","purchaseOrder","Item","O",2)

 ...d output^xmllib("ordering","purchaseOrder","Item","C",2)

 ...s %R(%R)=0

 ..d output^xmllib("ordering","purchaseOrder","ItemList","C",1)

 ..s %R(%R)=0

 .d output^xmllib("ordering","purchaseOrder","purchaseOrder","C",0)

 .s %R(%R)=0

 q

 ;

getDate() ;

 k date

 s date("ct")=$p($g(^POrders(poNo)),"*",4)

 q 1

 ;

getItem() ;

 k rec,item

 s prodNo=$o(^POrders(poNo,1,prodNo))

 i prodNo="" q 0

 s rec=$g(^POrders(poNo,1,prodNo))

 s item("at","productNo")=prodNo

 s item("at","quantity")=$p(rec,"*",1)

 s item("at","price")=$p(rec,"*",2)

 q 1

 ;

getList() ;

 s prodNo=""

 q 1

 ;

getOrder() ;

 n rec k ord

 s rec=$g(^POrders(poNo))

 i rec="" q 0

 s ord("at","PONumber")=poNo

 s ord("at","customerID")=$p(rec,"*",1)

 s ord("at","customerName")=$p(rec,"*",2)

 s ord("at","orderDate")=$p(rec,"*",3)

 q 1

 ;

getShip() ;

 n rec k ship

 s rec=$g(^POrders(poNo,0))

 s ship("at","street")=$p(rec,"*",1)

 s ship("at","city")=$p(rec,"*",2)

 s ship("at","state")=$p(rec,"*",3)

 s ship("at","zip")=$p(rec,"*",4)

 q 1

 ;

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 35

Appendix E

Using the generated export routine ['xePOrder'] within an application

POGen ;generating purchaseOrder.xml document

 ;

 ...
;get last purchaseOrder number
s poNo=$o(^POrders(""),-1)

 ...
 ;set document prolog
 s prolog(1)="<?xml version="_$c(34)_"1.0"_$c(34)_"?>"

s prolog(2)="<!DOCTYPE purchaseOrder SYSTEM "_$c(34)_"purchaseOrder.dtd"_$c(34)_">"

;indentation/line feed settings

s indent(1)="T",indent(2)="Y"

;open output device [file]

s device="C:\XML\export\PO"_poNo_".xml"
o device:("WNS")

;call initialisation routine

d %init^xmllib(device,.indent,.prolog)

;call export routine

d %ext^xePOrder(poNo)

;close output device

c device

...

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 36

Appendix F

Global layouts for ^xmlDTD

Field delimiter = $c(126) ['~']

Project master details

^xmlDTD(project_code)

Field Description Format Comments
S project_code X(10)
1 Project name X(30)

This node is set by the L-DPM during project creation.

If the Routine Generator function is being used independently of the L-DPM it is up to the
developer whether this node is created or not. To maintain compatibility with the L-DPM [if it
may be used in the future] it is recommended that this node is created, and that the subscript
and field formats are observed.

DTD master details

^xmlDTD(project_code, dtd_name)

Field Description Format Comments
S dtd_name X(N)
1 Date & Time of Last Import $H
2 Import File Path/Name X(N)
3 Date & Time of Last Generation $H
4 Routine Name X(8)
5 System Version 9(N)
6 DTD Root Element X(N)

Fields 1 & 2 of this node are set by the L-DPM during DTD import, and field 1 updated if the
DTD is edited.

If the Routine Generator function is being used independently of the L-DPM it is up to the
developer whether these fields are created or not. To maintain compatibility with the L-DPM [
if it may be used in the future] it is recommended that these fields are created, and that the
field formats are observed.

Fields 3-6 are created and maintained by the Routine Generator function. These fields will be
set to null if an error is raised by the function during the generation.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 37

Appendix F

Global layouts for ^xmlDTD

Imported DTD Content

^xmlDTD(project_code, dtd_name, 0, line_no)

Field Description Format Comments
S line_no 9(N)
1 DTD source file line X(N)

This node contains the source code of the original DTD file, with each CR/LF [$c(13,10)]
delimited line of the file on a separate 'line_no'.

This node is created by the L-DPM during DTD import, with CR/LF characters replaced by the
$c(127) character.

If the Routine Generator function is being used independently of the L-DPM it is up to the
developer to populate this node before the function can be used. To maintain compatibility
with the L-DPM [if it may be used in the future] it is recommended that CR/LF characters are
replaced by the $c(127) character. This will ensure that the editing and exporting facilities of
the L-DPM write out the individual lines of the DTD correctly, since the stored $c(127)
character is replaced by the CR/LF characters within these functions.

Normalised DTD Content

^xmlDTD(project_code, dtd_name, 1, line_no)

Field Description Format Comments
S line_no 9(N)
1 Normlised DTD file line X(N)

This, and all subsequent nodes, are created by the Routine Generator function.

The node contains a normalised and restructured copy of the original DTD file. The contents
of each opening ['<'] and closing ['>'] tag, as well as any external parameter entity references,
are placed on individual 'line_no' nodes. Contiguous white space is replaced by a single
space character. Leading and trailing spaces are removed, as are any comments not
containing data access logic. Closing tags ['>'] at the end of each line are removed, and
opening comment tags ['<!--'] replaced by a normal element closing tag ['>'].

Each line is structured such that it's contents can subsequently be read and interpreted by
later stages of the Routine Generation function.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 38

Appendix F

Global layouts for ^xmlDTD

Document Content Analysis

^xmlDTD(project_code, dtd_name, 2)

The %AF Tag

^xmlDTD(project_code, dtd_name, 2, "%AF", access_function_name, line_no)

Field Description Format Comments
S access_function_name X(10)
S line_no 9(N)
1 Access function code line X(N)

This node contains each access function embedded within the DTD, as it will appear in the
final generated export routine. The access_function_name is formatted such that it ends with
an empty parameter container [e.g. getOrder()]. The first code line [i.e. line_no = 1]
contains the function header label. All subsequent lines contain the executable code as
defined within the DTD.

The %EL Tag

^xmlDTD(project_code, dtd_name, 2, "%EL", element_name)

Field Description Format Comments
S element_name X(N)
1 Access function name declaration X(10)
2 Variable reference declaration X(N)

This node contains each %EL tag declaration within the DTD. The access function name
declaration is formatted such that it ends with an empty parameter container [e.g. getOrder()
].

The %PM Tag

^xmlDTD(project_code, dtd_name, 2, "%PM", sequence_no)

Field Description Format Comments
S sequence_no 9(N)
1 Parameter name X(10)

This node contains any parameters declared in the %PM tag within the DTD. The sequence is
as per the order in which the parameters are declared within the tag.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 39

Appendix F

Global layouts for ^xmlDTD

The ATTLIST Tag

^xmlDTD(project_code, dtd_name, 2, "ATTLIST", element_name, attribute_name)

Field Description Format Comments
S element_name X(N)
S attribute_name X(N)

1 Attribute Default Declaration Key X(1)

R = #REQUIRED
I = #IMPLIED
F = #FIXED
NULL = DEFAULT VALUE
 SPECIFIED

2 Attribute Data Type X(N)

WHERE THE ATTRIBUTE
IS AN ENUMERATED
TYPE, FIELDS 2..N
CONTAIN THE
POSSIBLE VALUES

This node contains an analysis of each attribute's default declaration and data type declared
within the ATTLIST tags of the DTD.

^xmlDTD(project_code, dtd_name, 2, "ATTLIST", element_name, attribute_name, "def")

Field Description Format Comments
S element_name X(N)

S attribute_name X(N)

1 Attribute Default Value X(N)
WHERE Attribute Default
Declaration Key = 'F' OR
NULL

If the attribute has a default value specified [i.e. if it's Attribute Default Declaration Key = 'F' OR NULL],
the value is stored in the above node.

The ELEMENT Tag

^xmlDTD(project_code, dtd_name, 2, "ELEMENT", 0, element_name)

Field Description Format Comments
S element_name X(N)
1 Element Content Specification X(N) AS PER THE DTD

This node contains the content specification of each element, as declared within the
ELEMENT tag of the DTD.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 40

Appendix F

Global layouts for ^xmlDTD

^xmlDTD(project_code, dtd_name, 2, "ELEMENT", 1, element_name, group_no)

Field Description Format Comments
S element_name X(N)
S group_no 9(N)

1 Element Content Group X(N)

This node is created by separating out any grouping constructs within the content
specification of the ELEMENT tag, and placing them on separate 'group_no' nodes. Pointers
are maintained beween nodes such that the content can be re-assembled.

^xmlDTD(project_code, dtd_name, 2, "ELEMENT", 2, element_name)

Field Description Format Comments
S element_name X(N)

1 Child Node Sequence X(1)
C = CHOICE
S = SEQUENCE

This node specifies the primary sequencing pattern of the element [a sequential or choice
group]

^xmlDTD(project_code, dtd_name, 2, "ELEMENT", 2, element_name,

child_node_structure, ...)

Field Description Format Comments
S element_name X(N)
S child_node_structure

1
Child Node Sequence/Repeat
Marker

X(2)

CHARACTER 1:
C = CHOICE
S = SEQUENCE

CHARACTER 2:
R = CHILD NODE IS
 REPEATABLE

2 Child Element Repeat Marker X(1)
R = CHILD ELEMENT IS
 REPEATABLE

3 Child Element Name X(N)

This node contains a representation of the sequencing and grouping constructs of an
element's immediate descendant elements, as declared within the content specification of the
ELEMENT tag.

For content specifications where there is no sub-grouping of elements [e.g. <! ELEMENT root (

A,B,C)>], the 'child_node_structure' subscript is simply a sequence number specifying the
child element's position within the declaration.

Where sub-grouping of elements is specified [e.g. <! ELEMENT root ((A | B)*, C)>], the
'child_node_structure' subscript is more complex. In fact, it is not just a single subscript, but
any number of them, depending upon the complexity of the element content's sub-grouping.
Each sub-group node is represented by a "<G>" subscript. Sequence numbers are also used
to specify element positions within the grouping constructs.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 41

Appendix F

Global layouts for ^xmlDTD

Document Flow Analysis

^xmlDTD(project_code, dtd_name, 3, root_element_name)

Field Description Format Comments
S root_element_name X(N)

1 Child Node Sequence X(1)
C = CHOICE
S = SEQUENCE

This node specifies the primary sequencing pattern of the root element [a sequential or
choice group]

^xmlDTD(project_code, dtd_name, 3, root_element_name, child_node_sequence_no,

child_node_name, ...)

Field Description Format Comments
S child_node_sequence_no 9(N)

S child_node_name X(N)

'<G>' = GROUP NODES

element_name = ELEMENT
 NODES

1
Child Node Sequence/Repeat
Marker

X(2)

CHARACTER 1:
C = CHOICE
S = SEQUENCE

CHARACTER 2:
R = CHILD NODE IS
 REPEATABLE

2 Element Repeat Marker X(1)
R = ELEMENT IS
 REPEATABLE

This node contains a representation of the sequencing and grouping constructs of the entire
DTD, beginning from the root element. Each node of the DTD is subscripted by it's sequence
within it's parent node and it's name. Group nodes are identified by a '<G>' subscript, element
nodes by the element name. The 'child_node_sequence_no' and 'child_node_name'
subscripts are repeated until the entire document has been described.

^xmlDTD(project_code, dtd_name, 4, node_sequence_no)

Field Description Format Comments
S node_sequence_no 9(N)

1 Node Nesting Count X(1)

NUMBER OF NODES
FROM THE ROOT
ELEMENT TO THE
CURRENT NODE

2 Node Name X(N)

3 Element Repeat Marker X(1)
R = ELEMENT IS
 REPEATABLE

4 Child Node Sequence X(1)
C = CHOICE
S = SEQUENCE

5 Node Sequence X(1)
C = CHOICE
S = SEQUENCE

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 42

Appendix F

Global layouts for ^xmlDTD

Document Flow Routine

^xmlDTD(project_code, dtd_name, 5, line_no)

Field Description Format Comments
S line_no 9(N)
1 Document Flow Routine Code Line X(N)

This node contains the generated docment flow routine, based on the structure rules of the
DTD.

Export Routine

^xmlDTD(project_code, dtd_name, 6, line_no)

Field Description Format Comments
S line_no 9(N)
1 Export Routine Code Line X(N)

This node contains the export routine as it is saved within the M system, including the
generated document flow routine, embedded access functions and routine headers.

Lastic DTD Project Manager

© 2001-2013 Lastic Limited Developer's Guide Page 43

Appendix G

Global layouts for ^xmlRTN

This global is used to store skeleton code particles used during the generation of the
document flow routines.

Choice, Non-Repeating Element
^xmlRTN(0,"E","C","NR", 1) = i %R(%R) i $$@F d
 2) = .@EO
 3) = .@
 4) = .@EC
 5) = .s %R(%R)=0

Choice, Repeating Element
^xmlRTN(0,"E","C","R", 1) = i %R(%R) f q:$$@F=0 d
 2) = .@EO
 3) = .@
 4) = .@EC
 5) = .s %R(%R)=0

Sequential, Non-Repeating Element
^xmlRTN(0,"E","S","NR", 1) = i $$@F d
 2) = .@EO
 3) = .@
 4) = .@EC
 5) = .s %R(%R)=0

Sequential, Repeating Element
^xmlRTN(0,"E","S","R", 1) = q:$$@F=0 d
 2) = .@EO
 3) = .@
 4) = .@EC
 5) = .s %R(%R)=0

Choice, Non-Repeating Group
^xmlRTN(0,"G","C","NR", 1) = i %R(%R) d
 2) = .s %R=%R+1,%R(%R)=1
 3) = .@
 4) = .s %R=%R-1,%R(%R)=%R(%R+1)

Choice, Repeating Group
^xmlRTN(0,"G","C","R", 1) = i %R(%R) f d q:%R(%R)
 2) = .s %R=%R+1,%R(%R)=1
 3) = .@
 4) = .s %R=%R-1,%R(%R)=%R(%R+1)

Sequential, Non-Repeating Group
^xmlRTN(0,"G","S","NR", 1) = d
 2) = .s %R=%R+1,%R(%R)=1
 3) = .@
 4) = .s %R=%R-1,%R(%R)=%R(%R+1)

Sequential, Repeating Group
^xmlRTN(0,"G","S","R", 1) = f d q:%R(%R)
 2) = .s %R=%R+1,%R(%R)=1
 3) = .@
 4) = .s %R=%R-1,%R(%R)=%R(%R+1)

